Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

rac-Carbonyl{1-[(diphenylphosphino)methyl]ethanethiolato}(triphenylphosphine)rhodium(I)

Simón Hernández-Ortega* and David Morales-Morales*

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, Mexico

Correspondence e-mail: simonho@unam.mx, damor@unam.mx

Received 24 September 2008; accepted 20 October 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; disorder in main residue; R factor = 0.049; wR factor = 0.108; data-to-parameter ratio = 15.0.

The title compound, $[Rh(C_{15}H_{16}PS)(C_{18}H_{15}P)(CO)]$, was synthesized from the reaction of the ligand *rac*- $[Ph_2PCH_2CH-(CH_3)SH]$ with *trans*- $[Rh(F)(CO)(PPh_3)_2]$ in a 1:1 molar ratio in toluene. The Rh atom is four-coordinated in a distorted square-planar geometry with the P–S ligand $[Ph_2PCH_2CH-(CH_3)S]$ acting as a chelate and the PPh₃ and disordered CO [site occupation factors of 0.61 (5) and 0.39 (5)] ligands completing the coordination.

Related literature

For general background, see: Au-Yeung & Chan (2004); Braunstein & Naud (2001); Dilworth & Weatley (2000); Dilworth *et al.* (2000); Fierro-Arias *et al.* (2008); Gómez-Benítez *et al.* (2007); Morales-Morales *et al.* (2002); Xie & Zhou (2008). For related structures, see: Lee *et al.* (2002).

Experimental

Crystal data

 $[Rh(C_{15}H_{16}PS)(C_{18}H_{15}P)(CO)]$ $M_r = 652.50$ Orthorhombic, *Pbca* a = 10.3142 (7) Å b = 16.865 (1) Å c = 34.984 (2) Å

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.827, T_{max} = 0.978$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.108$ S = 1.065573 reflections 372 parameters $V = 6085.5 \text{ (6) } \text{\AA}^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.76 \text{ mm}^{-1}$ T = 298 (2) K $0.26 \times 0.23 \times 0.03 \text{ mm}$

48521 measured reflections 5573 independent reflections 4152 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.095$

 $\begin{array}{l} \text{45 restraints} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.65 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} = -0.49 \text{ e } \text{\AA}^{-3} \end{array}$

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT-Plus* (Bruker, 1999); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL*.

Financial support of this research by CONACYT (F58692) and PAPIIT (IN227008) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2386).

References

Au-Yeung, T. T. L. & Chan, A. S. C. (2004). Coord. Chem. Rev. 248, 2151–2164. Braunstein, P. & Naud, F. (2001). Angew. Chem. Int. Ed. Engl. 40, 680–699.

Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Dilworth, J. R., Morales, D. & Zheng, Y. (2000). J. Chem. Soc. Dalton Trans. pp. 3007–3015.

Dilworth, J. R. & Weatley, N. (2000). Coord. Chem. Rev. 199, 89-158.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Fierro-Arias, J., Morales-Morales, D. & Hernández-Ortega, S. (2008). Acta Cryst. E64, m1196.

Gómez-Benítez, V., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007). Inorg. Chim. Acta, 360, 2128–2138.

Lee, H.-S., Bae, J.-Y., Kim, D.-H., Kim, H. S., Kim, S.-J., Cho, S., Ko, J. & Kang, S. O. (2002). Organometallics, 21, 210–219.

Morales-Morales, D. S., Rodríguez-Morales, S., Dilworth, J. R., Sousa-Pedrares, A. & Zheng, Y. (2002). *Inorg. Chim. Acta*, 332, 101–107.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Xie, J. H. & Zhou, Q. L. (2008). Acc. Chem. Res. 41, 581-593.

Acta Cryst. (2008). E64, m1465 [doi:10.1107/S1600536808034284]

rac-Carbonyl{1-[(diphenylphosphino)methyl]ethanethiolato}(triphenylphosphine)rhodium(I)

S. Hernández-Ortega and D. Morales-Morales

Comment

In recent years, attention has increasingly been paid to the coordination chemistry of polydentate ligands incorporating both thiolate and tertiary phosphine donor ligands, as their combination is likely to confer unusual structures and reactivities on their metal complexes [Dilworth, *et al.* 2000, Morales-Morales, *et al.*, 2002]. In the specific case of compounds with platinum group metals these may be suitable species for catalytic screening. Addiconally, the presence of these ligands in their transition metal complexes may render interesting behaviors in solution as these ligands can be capable of full or partial deligation (hemilability), (Dilworth & Weatley, 2000, Braunstein & Naud, 2001) being able to provide important extra coordination sites for incoming substrates during a catalytic process ([Dilworth & Weatley, 2000, Braunstein & Naud, 2001). Moreover, chiral or potentially bidentate ligands have been used extensively to perform asymmetric transformations [Au-Yeung, *et al.* 2004, & Xie *et al.*, 2008], however the most commonly employed are bidentated phosphines and the use of sulfur containing ligands has been avoided owing to the well known propensity of platinum group metals to sulfur poisoning.

Thus, owing to our continuous interest in the synthesis of transition metal complexes bearing P—S hybrid ligands [Morales-Morales, *et al.*, 2002, Gómez-Benítez, *et al.*, 2007, Fierro-Arias, *et al.* 2008] we would like to report the crystal structure of the rhodium(I) complex [Rh(Ph₂PCH₂CH(CH₃)S)(PPh₃)(CO)] (I).

The rhodium atom is four-coordinated in a distorted square planar geometry with the P—S ligand [Ph₂PCH₂CH(CH₃)S] acting as a chelate and the PPh₃ and CO ligands completing the coordination sphere (Fig. 1). Similar geometry has been found in a previously reported rhodium complex (Lee *et al.*, 2002). The phenyl ring on the P atoms are essentially planar, these phenyl rings are rotated around the P—C bond, forming the dihedral angles with the coordination plane P1-C34-P2-S1 (Table 1).

Experimental

Synthesis of [Rh(Ph₂PCH₂CH(CH₃)S)(PPh₃)(CO)] (1). To a solution of *trans*-[Rh(F)(CO)(PPh₃)₂] (100 mg, 12 mmol) in toluene (25 ml) 1 equivalent of the ligand rac-[Ph₂PCH₂CH(CH₃)SH] in toluene (10 ml) was added under stirring. The resulting mixture was allowed to stir overnight. After this time, the solvent was taken off under vacuum and the residue recrystallized from a double layer solvent system CH₂Cl₂/MeOH to afford complex 1 as a microcrystalline yellow powder. Yield 87%. ¹H-NMR (300 MHz, CDCl₃), (7.00–8.00 (m, Ph, 25H), 2.90–3.20 (m, CH₂, 2H), 2.40–2.70 (m, CH, 1H), 1.30–1.50 (d, CH₃, 3H); ³¹P-NMR (121 MHz, CDCl₃), (68.21 (dd), 59.86 (dd) 1JRh-P= 133.4 Hz, 2JP-P = 304.2 Hz. Elem. Anal. Calculated for [C₃₄H₃₁OP₂RhS] Calc. %: C: 62.49, H: 4.94. Found %: C: 62.50, H: 4.90. MS-FAB+ [M+] = 653 m/z.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (methyne), 0.97 Å (methylene), 0.96Å (methyl) and 0.93Å (aromatic) with $U_{iso}(H)$ = 1.2 $U_{eq}(aroatic, methylene, methine)$ or $U_{iso}(H)$ = 1.5 $U_{eq}(methyl)$.

The CO is disordered and was refined anisotropically in two major contributors (61/39% for C34,O1/C34A,O1A, respectively)

Figures

Fig. 1. Molecular structure of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Disordered atom and hydrogen atoms were omitted for clarity.

rac-Carbonyl{1- [(diphenylphosphino)methyl]ethanethiolato}(triphenylphosphine)rhodium(I)

$F_{000} = 2672$
$D_{\rm x} = 1.424 {\rm ~Mg~m^{-3}}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 7386 reflections
$\theta = 2.3 - 31.0^{\circ}$
$\mu = 0.76 \text{ mm}^{-1}$
T = 298 (2) K
Prism, yellow
$0.26 \times 0.23 \times 0.03 \text{ mm}$
5573 independent reflections
4152 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.095$
$\theta_{\text{max}} = 25.4^{\circ}$
$\theta_{\min} = 2.3^{\circ}$
$h = -12 \rightarrow 12$
$k = -20 \rightarrow 20$
$l = -42 \rightarrow 42$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained

$\mathbf{P}(\mathbf{r}^2) = 0.100$	$w = 1/[\sigma^2(F_0^2) + (0.0403P)^2 + 6.156P]$
$WR(F^{-}) = 0.108$	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\text{max}} = 0.001$
5573 reflections	$\Delta \rho_{max} = 0.65 \text{ e } \text{\AA}^{-3}$
372 parameters	$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$
45 restraints	Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	Uiso*/Ueq	Occ. (<1)
Rh1	0.32255 (3)	0.37305 (2)	0.105932 (9)	0.03228 (11)	
C34	0.1592 (15)	0.377 (2)	0.0860 (10)	0.047 (4)	0.61 (5)
01	0.0553 (7)	0.3812 (17)	0.0750 (4)	0.067 (4)	0.61 (5)
C34A	0.154 (2)	0.363 (3)	0.0902 (18)	0.050 (5)	0.39 (5)
O1A	0.0544 (11)	0.344 (2)	0.0794 (8)	0.068 (5)	0.39 (5)
S1	0.53111 (12)	0.35920 (9)	0.13006 (4)	0.0596 (4)	
P1	0.40804 (11)	0.32103 (6)	0.05089 (3)	0.0316 (3)	
P2	0.26119 (11)	0.43243 (7)	0.16325 (3)	0.0357 (3)	
C1	0.3715 (4)	0.2171 (2)	0.04190 (12)	0.0331 (9)	
C2	0.3274 (5)	0.1695 (3)	0.07131 (13)	0.0519 (13)	
H2	0.3099	0.1913	0.0952	0.062*	
C3	0.3096 (6)	0.0894 (3)	0.06497 (15)	0.0610 (15)	
Н3	0.2819	0.0573	0.0850	0.073*	
C4	0.3320 (5)	0.0561 (3)	0.02980 (15)	0.0555 (14)	
H4	0.3186	0.0021	0.0260	0.067*	
C5	0.3742 (5)	0.1030 (3)	0.00031 (14)	0.0481 (12)	
Н5	0.3891	0.0810	-0.0237	0.058*	
C6	0.3945 (4)	0.1826 (3)	0.00618 (12)	0.0398 (10)	
H6	0.4239	0.2140	-0.0139	0.048*	
C7	0.3736 (4)	0.3667 (2)	0.00480 (11)	0.0340 (10)	
C8	0.2469 (5)	0.3649 (3)	-0.00953 (13)	0.0435 (11)	
H8	0.1823	0.3391	0.0042	0.052*	
С9	0.2169 (6)	0.4009 (3)	-0.04367 (14)	0.0540 (13)	
Н9	0.1326	0.3987	-0.0530	0.065*	

C10	0.3106 (7)	0.4400 (3)	-0.06404 (15)	0.0661 (16)
H10	0.2893	0.4650	-0.0869	0.079*
C11	0.4348 (7)	0.4422 (3)	-0.05088 (15)	0.0677 (17)
H11	0.4983	0.4682	-0.0650	0.081*
C12	0.4671 (5)	0.4061 (3)	-0.01658 (14)	0.0542 (13)
H12	0.5521	0.4082	-0.0078	0.065*
C13	0.5832 (4)	0.3222 (3)	0.05573 (12)	0.0400 (11)
H13A	0.6223	0.2877	0.0368	0.048*
H13B	0.6159	0.3755	0.0519	0.048*
C14	0.6172 (5)	0.2934 (3)	0.09580 (13)	0.0489 (12)
H14	0.5864	0.2389	0.0991	0.059*
C15	0.7617 (5)	0.2968 (4)	0.10406 (16)	0.0695 (17)
H15A	0.8064	0.2603	0.0876	0.104*
H15B	0.7770	0.2827	0.1303	0.104*
H15C	0.7930	0.3496	0.0995	0.104*
C16	0.2358 (5)	0.3652 (3)	0.20339 (13)	0.0448 (12)
C17	0.2788 (5)	0.2880 (3)	0.20110 (15)	0.0578 (14)
H17	0.3237	0.2708	0.1796	0.069*
C18	0.2550 (7)	0.2360 (4)	0.23093 (17)	0.0781 (19)
H18	0.2830	0.1837	0.2293	0.094*
C19	0.1906 (6)	0.2614 (4)	0.26265 (18)	0.081 (2)
H19	0.1741	0.2260	0.2824	0.098*
C20	0.1502 (6)	0.3382 (5)	0.26568 (16)	0.080(2)
H20	0.1097	0.3556	0.2879	0.096*
C21	0.1692 (6)	0.3896 (4)	0.23600 (15)	0.0683 (17)
H21	0.1376	0.4411	0.2376	0.082*
C22	0.3760 (4)	0.5072 (3)	0.17966 (13)	0.0432 (11)
C23	0.4103 (6)	0.5192 (3)	0.21715 (15)	0.0634 (15)
H23	0.3800	0.4849	0.2359	0.076*
C24	0.4899 (7)	0.5821 (4)	0.2272 (2)	0.086 (2)
H24	0.5136	0.5894	0.2526	0.103*
C25	0.5334 (6)	0.6333 (4)	0.2000 (2)	0.086 (2)
H25	0.5826	0.6771	0.2070	0.103*
C26	0.5047 (6)	0.6204 (4)	0.1623 (2)	0.0798 (19)
H26	0.5375	0.6539	0.1436	0.096*
C27	0.4273 (5)	0.5577 (3)	0.15254 (15)	0.0602 (15)
H27	0.4087	0.5489	0.1269	0.072*
C28	0.1079 (4)	0.4881 (3)	0.16297 (12)	0.0382 (10)
C29	0.1033 (5)	0.5697 (3)	0.16278 (13)	0.0495 (12)
H29	0.1800	0.5986	0.1636	0.059*
C30	-0.0137 (6)	0.6091 (3)	0.16137 (16)	0.0634 (15)
H30	-0.0152	0.6643	0.1610	0.076*
C31	-0.1269 (6)	0.5679 (4)	0.16049 (16)	0.0706 (17)
H31	-0.2052	0.5952	0.1594	0.085*
C32	-0.1268 (5)	0.4868 (4)	0.16114 (17)	0.0691 (16)
H32	-0.2043	0.4586	0.1609	0.083*
C33	-0.0086 (5)	0.4475 (3)	0.16212 (15)	0.0576 (14)
H33	-0.0077	0.3924	0.1622	0.069*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rh1	0.03252 (19)	0.0389 (2)	0.02540 (18)	0.00223 (16)	0.00101 (15)	-0.00288 (15)
C34	0.042 (4)	0.076 (10)	0.021 (7)	0.001 (5)	0.000 (4)	-0.009 (6)
01	0.044 (3)	0.106 (11)	0.052 (4)	-0.004 (4)	-0.013 (3)	0.006 (6)
C34A	0.042 (4)	0.079 (12)	0.028 (10)	-0.011 (6)	0.004 (5)	-0.019 (9)
O1A	0.048 (4)	0.097 (12)	0.057 (8)	-0.022 (6)	-0.009 (5)	-0.013 (9)
S1	0.0400 (7)	0.1022 (12)	0.0366 (7)	0.0153 (7)	-0.0063 (6)	-0.0186 (7)
P1	0.0355 (6)	0.0331 (6)	0.0261 (6)	-0.0007 (5)	0.0030 (5)	-0.0019 (5)
P2	0.0355 (6)	0.0446 (7)	0.0270 (6)	0.0050 (5)	0.0021 (5)	-0.0037 (5)
C1	0.034 (2)	0.033 (2)	0.032 (2)	0.0000 (19)	0.0003 (19)	-0.0014 (18)
C2	0.077 (4)	0.044 (3)	0.034 (3)	-0.005 (3)	0.009 (3)	-0.003 (2)
C3	0.090 (4)	0.039 (3)	0.053 (3)	-0.019 (3)	0.007 (3)	0.007 (2)
C4	0.066 (3)	0.036 (3)	0.064 (3)	-0.008 (3)	-0.014 (3)	-0.007 (2)
C5	0.062 (3)	0.038 (3)	0.044 (3)	-0.001 (2)	-0.001 (2)	-0.008 (2)
C6	0.044 (3)	0.036 (2)	0.039 (2)	0.001 (2)	0.007 (2)	-0.001 (2)
C7	0.047 (2)	0.028 (2)	0.028 (2)	0.003 (2)	0.0034 (19)	-0.0047 (18)
C8	0.055 (3)	0.041 (3)	0.035 (3)	-0.002 (2)	-0.001 (2)	-0.006 (2)
C9	0.072 (4)	0.050 (3)	0.039 (3)	0.011 (3)	-0.012 (3)	-0.005 (2)
C10	0.100 (5)	0.061 (4)	0.038 (3)	0.005 (4)	-0.011 (3)	0.006 (3)
C11	0.100 (5)	0.061 (4)	0.041 (3)	-0.015 (3)	0.017 (3)	0.012 (3)
C12	0.060 (3)	0.060 (3)	0.043 (3)	-0.013 (3)	0.002 (3)	0.009 (2)
C13	0.035 (2)	0.047 (3)	0.038 (3)	0.004 (2)	0.006 (2)	-0.008 (2)
C14	0.044 (3)	0.061 (3)	0.042 (3)	0.001 (3)	0.004 (2)	-0.007 (2)
C15	0.050 (3)	0.088 (4)	0.070 (4)	0.012 (3)	-0.004 (3)	-0.017 (3)
C16	0.045 (3)	0.056 (3)	0.034 (2)	0.008 (2)	0.006 (2)	0.003 (2)
C17	0.065 (4)	0.065 (4)	0.044 (3)	0.010 (3)	0.006 (3)	0.005 (3)
C18	0.105 (5)	0.070 (4)	0.059 (4)	0.016 (4)	0.010 (4)	0.024 (3)
C19	0.082 (5)	0.103 (5)	0.059 (4)	-0.001 (4)	0.007 (3)	0.039 (4)
C20	0.083 (5)	0.112 (6)	0.046 (3)	0.017 (4)	0.022 (3)	0.017 (3)
C21	0.082 (4)	0.080 (4)	0.042 (3)	0.016 (3)	0.021 (3)	0.006 (3)
C22	0.034 (2)	0.054 (3)	0.041 (3)	0.005 (2)	-0.004 (2)	-0.011 (2)
C23	0.074 (4)	0.070 (4)	0.046 (3)	0.007 (3)	-0.013 (3)	-0.011 (3)
C24	0.092 (5)	0.100 (5)	0.066 (4)	-0.009 (4)	-0.029 (4)	-0.027 (4)
C25	0.070 (4)	0.094 (5)	0.094 (5)	-0.024 (4)	-0.007 (4)	-0.040 (4)
C26	0.065 (4)	0.088 (5)	0.086 (5)	-0.025 (4)	0.017 (4)	-0.017 (4)
C27	0.056 (3)	0.079 (4)	0.046 (3)	-0.024 (3)	0.003 (3)	-0.014 (3)
C28	0.038 (3)	0.049 (3)	0.027 (2)	0.009 (2)	-0.001 (2)	-0.007 (2)
C29	0.050 (3)	0.058 (3)	0.041 (3)	0.011 (3)	0.006 (2)	-0.001 (2)
C30	0.076 (4)	0.055 (3)	0.059 (3)	0.024 (3)	-0.004 (3)	-0.008 (3)
C31	0.053 (4)	0.095 (5)	0.064 (4)	0.031 (4)	-0.004 (3)	-0.022 (3)
C32	0.041 (3)	0.093 (5)	0.073 (4)	-0.001 (3)	-0.006 (3)	-0.017 (4)
C33	0.043 (3)	0.064 (4)	0.066 (4)	0.001 (3)	0.003 (3)	-0.012 (3)
Geometric parar	neters (Å, °)					

Atomic displacement parameters $(Å^2)$

Rh1-C34

C14—C15

1.824 (7)

1.519 (7)

Rh1—C34A	1.827 (8)	C14—H14	0.9800
Rh1—P1	2.2922 (11)	C15—H15A	0.9600
Rh1—S1	2.3225 (13)	C15—H15B	0.9600
Rh1—P2	2.3289 (11)	C15—H15C	0.9600
C34—O1	1.141 (8)	C16—C17	1.378 (7)
C34A—O1A	1.145 (11)	C16—C21	1.394 (7)
S1—C14	1.859 (5)	C17—C18	1.385 (7)
P1—C13	1.815 (4)	С17—Н17	0.9300
P1—C1	1.820 (4)	C18—C19	1.362 (8)
P1—C7	1.822 (4)	C18—H18	0.9300
P2—C22	1.822 (5)	C19—C20	1.365 (9)
P2—C16	1.824 (5)	С19—Н19	0.9300
P2—C28	1.840 (4)	C20—C21	1.367 (8)
C1—C2	1.382 (6)	С20—Н20	0.9300
C1—C6	1.399 (6)	C21—H21	0.9300
C2—C3	1.382 (7)	C22—C23	1.374 (7)
С2—Н2	0.9300	C22—C27	1.381 (7)
C3—C4	1.372 (7)	C23—C24	1.387 (8)
С3—Н3	0.9300	С23—Н23	0.9300
C4—C5	1.371 (7)	C24—C25	1.362 (9)
C4—H4	0.9300	C24—H24	0.9300
C5—C6	1.374 (6)	C25—C26	1.367 (9)
С5—Н5	0.9300	C25—H25	0.9300
С6—Н6	0.9300	C26—C27	1.368 (7)
C7—C12	1.390 (6)	С26—Н26	0.9300
С7—С8	1.399 (6)	С27—Н27	0.9300
C8—C9	1.375 (7)	C28—C29	1.376 (6)
С8—Н8	0.9300	C28—C33	1.383 (7)
C9—C10	1.369 (8)	C29—C30	1.379 (7)
С9—Н9	0.9300	С29—Н29	0.9300
C10-C11	1.362 (8)	C30—C31	1.359 (8)
C10—H10	0.9300	С30—Н30	0.9300
C11—C12	1.386 (7)	C31—C32	1.368 (8)
C11—H11	0.9300	C31—H31	0.9300
C12—H12	0.9300	C32—C33	1.388 (7)
C13—C14	1.524 (6)	С32—Н32	0.9300
C13—H13A	0.9700	С33—Н33	0.9300
C13—H13B	0.9700		
C34—Rh1—P1	92.7 (13)	C15—C14—C13	112.9 (4)
C34A—Rh1—P1	94 (2)	C15-C14-S1	108.9 (3)
C34—Rh1—S1	176.0 (12)	C13—C14—S1	107.0 (3)
C34A—Rh1—S1	168.4 (17)	C15—C14—H14	109.3
P1—Rh1—S1	84.87 (4)	C13—C14—H14	109.3
C34—Rh1—P2	93.6 (13)	S1—C14—H14	109.3
C34A—Rh1—P2	92 (2)	C14—C15—H15A	109.5
P1—Rh1—P2	172.88 (4)	C14—C15—H15B	109.5
S1—Rh1—P2	88.97 (4)	H15A—C15—H15B	109.5
O1—C34—Rh1	177 (3)	C14—C15—H15C	109.5
O1A—C34A—Rh1	168 (5)	H15A—C15—H15C	109.5

C14—S1—Rh1	105.56 (16)	H15B-C15-H15C	109.5
C13—P1—C1	103.5 (2)	C17—C16—C21	119.0 (5)
C13—P1—C7	105.8 (2)	C17—C16—P2	119.8 (4)
C1—P1—C7	102.34 (19)	C21—C16—P2	121.2 (4)
C13—P1—Rh1	107.49 (14)	C16—C17—C18	119.8 (5)
C1—P1—Rh1	115.72 (14)	С16—С17—Н17	120.1
C7—P1—Rh1	120.42 (14)	С18—С17—Н17	120.1
C22—P2—C16	106.3 (2)	C19—C18—C17	120.1 (6)
C22—P2—C28	102.0 (2)	C19—C18—H18	120.0
C16—P2—C28	101.4 (2)	C17—C18—H18	120.0
C22—P2—Rh1	113.09 (16)	C18—C19—C20	120.7 (6)
C16—P2—Rh1	115.75 (16)	С18—С19—Н19	119.6
C28—P2—Rh1	116.67 (14)	С20—С19—Н19	119.6
C2—C1—C6	118.6 (4)	C19—C20—C21	119.9 (6)
C2C1P1	119.9 (3)	С19—С20—Н20	120.0
C6—C1—P1	121.3 (3)	C21—C20—H20	120.0
C1—C2—C3	119.5 (4)	C20—C21—C16	120.4 (6)
С1—С2—Н2	120.3	C20—C21—H21	119.8
С3—С2—Н2	120.3	C16—C21—H21	119.8
C4—C3—C2	121.5 (5)	C23—C22—C27	117.8 (5)
С4—С3—Н3	119.3	C23—C22—P2	124.8 (4)
С2—С3—Н3	119.3	C27—C22—P2	117.3 (4)
C5—C4—C3	119.4 (5)	C22—C23—C24	120.5 (6)
С5—С4—Н4	120.3	С22—С23—Н23	119.8
C3—C4—H4	120.3	C24—C23—H23	119.8
C4—C5—C6	120.0 (5)	C25—C24—C23	120.2 (6)
C4—C5—H5	120.0	C25—C24—H24	119.9
С6—С5—Н5	120.0	C23—C24—H24	119.9
C5—C6—C1	121.0 (4)	C24—C25—C26	120.1 (6)
С5—С6—Н6	119.5	C24—C25—H25	119.9
С1—С6—Н6	119.5	C26—C25—H25	119.9
C12—C7—C8	117.7 (4)	C25—C26—C27	119.4 (6)
C12—C7—P1	122.9 (4)	C25—C26—H26	120.3
C8—C7—P1	119.4 (3)	С27—С26—Н26	120.3
C9—C8—C7	120.8 (5)	C26—C27—C22	121.9 (5)
С9—С8—Н8	119.6	С26—С27—Н27	119.1
С7—С8—Н8	119.6	С22—С27—Н27	119.1
C10—C9—C8	120.4 (5)	C29—C28—C33	117.7 (4)
С10—С9—Н9	119.8	C29—C28—P2	122.7 (4)
С8—С9—Н9	119.8	C33—C28—P2	119.6 (4)
C11—C10—C9	120.1 (5)	C28—C29—C30	120.8 (5)
C11—C10—H10	120.0	С28—С29—Н29	119.6
C9—C10—H10	120.0	С30—С29—Н29	119.6
C10—C11—C12	120.4 (5)	C31—C30—C29	120.4 (5)
C10—C11—H11	119.8	C31—C30—H30	119.8
C12—C11—H11	119.8	С29—С30—Н30	119.8
C11—C12—C7	120.6 (5)	C30—C31—C32	120.7 (5)
C11—C12—H12	119.7	C30—C31—H31	119.7
C7—C12—H12	119.7	C32—C31—H31	119.7

C14—C13—P1	108.1 (3)	C31—C32—C33	118.6 (6)
C14—C13—H13A	110.1	С31—С32—Н32	120.7
P1—C13—H13A	110.1	С33—С32—Н32	120.7
C14—C13—H13B	110.1	C28—C33—C32	121.8 (5)
Р1—С13—Н13В	110.1	С28—С33—Н33	119.1
H13A—C13—H13B	108.4	С32—С33—Н33	119.1

Table 1

Dihedral angle of phenyl rings with the coordination center (P1-S1-P2-C34) (Å).

Plane	angle
C1-C6	85.4 (1)
C7-C12	56.29 (9)
C16-C21	74.2 (2)
C22-C27	70.4 (1)
C28-C33	68.9 (1)

Fig. 1